
Python for Kids

The Python for kids course is designed to introduce students to the

world of programming using the Pictoblox platform

Learn the basics of coding with Python programming. We are

going to use PictoBlox as the tool for programming. Learn

concepts of algorithm, loops, sequencing, conditional

statements, operators, list, and functions. Learn how to make

games with Python in an interactive way.

PROGRAMMING

Start Course

Course objectives

By the end of this course, you will be able to:

I. Learn the basics of programming and Python.

II. Find your way around and use Pictoblox easily.

III. Create and use variables, data types, and simple rules in
Python.

IV. Make and use step-by-step instructions to solve problems.

V. Combine Python code with Pictoblox blocks for more
features.

VI. Fix and debug code to make sure it works right.

VII. Use programming skills to create real-world projects.

VIII.Build fun projects like games, animations, and simple apps.

LESSON 1

Introduction to Pictoblox and Python.

At the end of this lesson, you will:

 Know what programming is and its importance.
 Understand the features and capabilities of the

Pictoblox platform.
 Set up the Pictoblox environment for Python

programming.
 Navigate the Pictoblox interface and familiarize

with its tools and functions

A programming language is
simply a particular way to talk to a
computer—a way to use
instructions that both humans
and the computer can understand.
We are going to use python

language to make programs.
Python is an easy-to-learn
programming language that has
some really useful features for a
beginning programmer.

How do we programme?

Programming fosters creativity,
reasoning, and problem-solving
in you. The programmer gets the
opportunity to create something
from nothing, use logic to turn
programming constructs into a

form that a computer can run,
and, when things don’t work
quite as well as expected, use
problem solving to figure out
what has gone wrong.

Why is programming

important

Coding is just like solving a math
problem. There may be many
ways to solve a problem.
Similarly, there could be more
than one way to write code for the
same task. Just like solving any

other problem, some coding
approaches are more efficient
than others.

What is

programming/coding

Introduction to Programming

Installing the Software

To begin your programming journey with

PictoBlox, you need to first, well, install it. Follow

our instructions given below carefully and you’ll be

well on your way!

Windows Installer (.exe)

STEP 1: Download the Pictoblox Installer (.exe) for

Windows 7 and above.

Windows Installer 64-bit

Windows Installer 32-bit

STEP 2: Run the .exe file.

Some of the device gives the warning popup. You

don’t have to worry, this software is harmless.

Click on More info and then click on Run anyway.

STEp 3: Rest of the installation is straight forward,

you can follow the popup and check on the option

appropriate for your need.

Installing the software

macOS Installer
STEP 1: Download the Pictoblox Installer
(.dmg).

macOS Installer
STEP 2: Run the .dmg file.

LESSON 2

Learning Outcomes

At the end of this lesson, you’ll be able to:

1.Know Python coding environment and how to use it.

2.Know about various functions used to control sprite.

3.Code on your own to make your sprite Tobi walk.

Animations with python

What is a Backdrop?

A backdrop is one of the many frames,
or backgrounds, that a Stage can
have. The Stage can change its look to
any of its backdrops.

Choosing a Backdrop
You can choose a backdrop from
•the backdrop library
•uploading a file from the computer
•creating one using the paint editor

Click Choose the Backdrop and select
any backdrop you want. We’re choosing
Blue Sky.

What are Costumes?

A costume is one out of possibly many
“frames” or alternate appearances of a
sprite. Sprites can change their look to
any of its costumes. Every sprite has at
least one costume.

One of the most common uses of
costumes is to make an animation for a
game. You can use a number of
costumes to create one single animation.
The costumes available for the sprite are
shown in the Costume tab, next to
the Code tab on the extreme left.

How to Create Costumes?

There are four ways of getting a costume
for a sprite or stage.
1.From the costume library
2.Drawing one yourself using the inbuilt
paint editor
3.Getting an image or multiple images
from your desktop
4.Taking an image using a webcam

Functions to Control Sprites

A function is a reusable block of code that performs a specific task.
Functions are essential for organizing code into modular and
manageable pieces. They help improve code readability, promote
code reuse, and make it easier to maintain and debug programs.

Let’s break down the components of a function:1.Function Definition: It starts with the keyword def, followed by the function
name, parentheses, and a colon. The function name should follow Python’s
variable naming conventions.

2.Parameters: Inside the parentheses, you can declare parameters (inputs) that
the function accepts. Parameters are placeholders for values that will be passed
when the function is called.

3.Function Body: The code inside the function is indented and defines the tasks
the function performs. It can include variable declarations, conditionals, loops, and
other statements.
There are a lot of functions with which we can control the different aspects of
Sprite. We will look at the few important functions that will be useful to create an
animation.

1. move()

This function is used to move the sprite a certain
number of steps forward. It takes only one input:

1.Number of Steps – Integer

Example

1.Move

sprite = Sprite('Tobi')

sprite.gotoxy(0, 0)
sprite.setrotationstyle('left-right')

while 1:
sprite.move(3)
sprite.bounceonedge()

2. bounceonedge()
The function checks to see if its sprite is
touching the edge of the screen with the
move function and if it is, the sprite will
point in a direction that mirrors the
direction from which it was coming. It
uses a line perpendicular to the edge to
determine the reflection angle.
Example

sprite = Sprite('Tobi')

sprite.gotoxy(0, 0)
sprite.setrotationstyle('left-right')

while 1:
sprite.move(3)
sprite.bounceonedge()

3. setrotationstyle()
The function changes the rotation style of the sprite in-project. There are
three options for this function:
1.all around: All around means the sprite can face any of the 360 degrees. It
is the default.
2.left-right: Left-right means sprite can only face left or right, and any other
directions are rounded. The sprite will also be horizontally flipped when
facing left in the left-right style.
3.don’t rotate: Don’t rotate means that the sprite always faces as in 90°.
It takes only one input.

4. switchcostume()
This function is used to switch the sprite’s costume to a specific costume. It
takes only one input:
1.Costume Name – String
Example

sprite = Sprite('Tobi')

sprite.switchcostume("Tobi walking 1")
sprite.say("Tobi Walking 1", 2)

sprite.switchcostume("Tobi walking 2")
sprite.say("Tobi Walking 2", 2)

6. gotoxy()
This function is used to change the
sprite’s specified x and y coordinates on
the stage. It takes two inputs:
1.X Position – Integer from -240 to 240
2.Y Position – Integer from -180 to 180
Example

sprite = Sprite('Tobi')

sprite.gotoxy(0, 0)
sprite.say('This is Center', 2)

sprite.gotoxy(100, 100)
sprite.say('This is Top Right', 2)

sprite.gotoxy(-100, -100)
sprite.say('This is Bottom Left', 2)

5. nextcostume()
The function changes its sprite’s costume
to the next one in the costume pane, but
if the current costume is the last in the
list, the function will loop to the first.
Example

sprite = Sprite('Tobi')

sprite.switchcostume("Tobi walking 1")
sprite.say(sprite.costume("name"), 2)

sprite.nextcostume()
sprite.say(sprite.costume("name"), 2)

sprite.nextcostume()
sprite.say(sprite.costume("name"), 2)

sprite.nextcostume()
sprite.say(sprite.costume("name"), 2)

ACTIVITY:Lets Code

The code is pretty simple, let’s get straight into it, follow the below steps:

First, select the Tobi.py file from the Project Files section and by default, the syntax
will be written in sprite as an object.

sprite = Sprite('Tobi’)

We need to change the sprite’s position along the x-axis and y-axis, for that we need
to include gotoxy() function in a below-given manner:

sprite.gotoxy(0, -100)

Next, we will set up the rotation style to “left-right”.

sprite.setrotationstyle("left-right")

Algorithms & Flowcharts

Learning Outcomes
At the end of this lesson, you’ll:
1.Know what is an algorithm and how to
write it.
2.Know about what a flowchart is and
what the symbols in the flowchart mean.

An algorithm is like a set of instructions you follow to complete a task.
For example, your morning routine for school can be seen as an
algorithm. First, you wake up when the alarm rings. Then, you go to
the bathroom to brush your teeth. Next, you get dressed by choosing
and putting on your clothes. After that, you eat breakfast in the
kitchen. Then, you pack your school bag with all the necessary items
like books and your lunchbox. Finally, you put on your shoes and leave
for school. This step-by-step process ensures you are ready for school,
just like a computer follows a program's instructions.

An algorithm is defined as the step-by-step plan to solve the problem
for a given problem statement.

What is a Flowchart?
A flowchart is a diagrammatic representation of the step-by-step plan to
be followed for solving a task/problem statement.

Symbols used in a flowchart
1.Terminal: Indicates start / stop / halt

2.Input / Output: Indicates instructions that either take inputs or display output.

3.Processing: Indicates instructions that represent computation.

4.Decision: Indicates decision-based operations such as Yes/No, or true/false.

5.Connectors: Complex flowcharts which span over more than a page are connected via a connector.

6.Flow lines: Indicates the direction of flow of sequence in a flowchart.

By the end of this lesson ,you will be able to:

1. Know about variables and why you need them in Python
programming.

2. Know about how you can create and manipulate variables in
different ways.

3. Know about the arithmetic operators in Python programming.

4. Code simple programs in Pictoblox to experiment and test your
understanding of variables and arithmetic operators.

 Variables and Arithmetic Operators

Why Do You Need Variables?

Let's say you have a special notebook where you keep track of your
favorite games. One day, you write down "Minecraft" as your favorite
game. A few months later, you discover a new game called "Among Us,"
and now it becomes your favorite. You erase "Minecraft" and write
"Among Us" in its place. In programming, a variable is like that entry in
your notebook. It's a name that can hold different values at different
times. The name of the variable stays the same, but the information it
holds can change whenever you need it to.

What are Variables?

The notebook that is used to keep track of your favorite games can keep
track of several other games. In computer programming terms, the
notebook can be compared to variables.

A variable is something that can take or store different values as the
program is executed.

Data Types in Python
Variables are the values that are acted upon. Every value needs to be
assigned to a specific data type to make the variable more readable by a
computer.

Data type identifies the type of data that the declared
variable can hold. Thus, it indirectly helps the computer to
understand what operations need to be performed on those
variables.

Let us now understand what are the common data types that we can
use in programming:
•Integer
•Floating-point number
•String
•Boolean

Integer Data Type

Integer data type variables store integer values only. They store
whole numbers which have zero, positive and negative values but not
decimal values.

Multiple programming languages support different syntax to declare an
Integer variable.

If a user tries to create an integer variable and assign it a non-integer value,
the program returns an error.

#Example of declaring an Integer variable:

a = 2
b = -156

print(a)
print(b)

Variables of the integer data type are only capable of holding single values.
These variables are not capable of holding a long list of values.

Floating Point Number Data Type

Floating-point numbers are used to store decimal
values. They hold real numbers with decimal values.

Depending on the programming language, the syntax to declare floating-
point variables changes.
We can convert float to an integer using the int() function.

#Example of declaring an Float variable:

a = 2.5
b = -1.5

print(a)
print(int(b))

String Data Type

To extend the character data type, a user may have a requirement
to store and perform an operation on a sequence of characters. In
such cases, the String data type is present to fit the gap. The String data
type stores value in a sequence of characters i.e. in String format.

#Example of declaring an String variable:

a = 'I am '
b = 'Tobi'
c = 5

print(a)
print(a, b)
print("Number c is ", c)

Boolean Data Type

There is a subtype of Integer Data Type called “Boolean Data Type”,
which stores values in Boolean type only i.e. “true” or “false”. Users
can choose between the data types for variables as per program needs
and assign variables an appropriate data type.

Boolean is a subtype of integer data type. It stores true and false where
true means non-zero and false means zero.

#Example of declaring an Boolean
variable:

a = True
b = False

print(a)
print(b)

Naming Rules
As we have understood till now, variables are basically like nouns in a
programming language. Every variable in a program is unique. To
identify these variables uniquely, the user needs to allocate them a unique
name. This name acts as an identifier for that variable. In programming, a
user is not allowed to use the same name of a variable more than once.
Naming variables make it easier to call them while performing operations.
The name of a variable also suggests what information the variable
contains.
Below are some rules for naming a variable:
•A variable name cannot start with a number, it must start with an alphabet
or the underscore (_) sign
•A variable name is case-sensitive. Sum and sum are different variables
•A variable can only contain alphanumeric characters and underscore

Arithmetic Operators
Operators
Operators are special symbols that represent
computation. They are applied to operand(s), which can be
values or variables. The same operator can behave
differently on different data types. Value and variables
when used with an operator are known as operands.

Operators are categorized as
1.Arithmetic
2.Relational
3.Logical
4.Assignment.

Example 2Example 1DescriptionSymbol#

print("Good" + "Morning")
>>GoodMorning

print(60 + 40)
>>100

Addition+1

print(30 - 80)
>>-50

print(60 - 40)
>>20

Subtraction-2

print("Good" * 3)
>>GoodGoodGood

print(60 * 40)
>>2400

Multiplication*3

print(3.4 / 1.7)
>>2.0

print(17 / 5)
>>3.4

Division/4

print(3 // 2)
>>1

print(7.0 // 2)
>>3.0

Integer Division//5

print(23 % 2)
>>1

print(17 % 5)
>>2

Remainder /
Modulo

%6

print(16 ** 0.5)
>>4.0

print(2 ** 3)
>>8

Exponentiation**7

Mathematical/Arithmetic Operators

Taking Inputs with Sprite
In a program, it’s very important to take the inputs from the user.
For that there are 2 important functions we will use:
1.input(): This function makes the sprite ask the question to the
user.
2.answer(): This function stores the value entered by the user.

Activity 1: Addition Bot

sprite = Sprite('Tobi')

sprite.input("Enter Number 1")
a = int(sprite.answer())

sprite.say("You have entered: " + str(a))

Let us now create our addition bot, by using
the concept of variables and arithmetic
operators learned till now. The bot would be
responsible for performing an addition
operation on two numbers, which the user
needs to enter.

Example:
sprite = Sprite('Tobi')

sprite.input("Enter Number 1")
a = int(sprite.answer())

sprite.input("Enter Number 2")
b = int(sprite.answer())

sum = a + b

sprite.say("Addition is", 2)
sprite.say(sum)

Area Calculator

Let us now make an area calculator bot! The user needs to
enter the length and breadth and the bot displays the
result as a multiplication of length and breadth.

sprite = Sprite('Tobi')

sprite.input("Enter the length")
length = int(sprite.answer())

sprite.input("Enter the breadth")
breadth = int(sprite.answer())

area = length * breadth

sprite.say("Area is" + str(area))

Functions in Python

Learning outcomes
1. The usefulness of using functions in code.
2.How to define and call a function.
3.Parameters in a function

Mathematical Functions in Python

A function is a block of code made up
of a set of steps that results in a single
specific action. The programmer will
give this action a simple name. Giving a
simple name to a function increases the
chances that the set of steps can easily
be talked about and reused again and
again in the program.

Functions can be categorized as belonging to
1.Modules
2.Built-in
3.User-Defined

Module
A module is a file containing Python definitions (i.e. functions) and
statements. The standard library of Python is extended as a module(s) to a
programmer. Definitions from the module can be used within the code of a
program. A programmer needs to import the module to use these modules
in the program. Once you import a module, you can reference (use), any of
its functions or variables in your code.
Import is the simplest and most common way to use modules in our code.
Its syntax is:
import modulename1 [,modulename2, ———]

Example
import math

Example

On execution of this statement, Python
will
1.Search for the file “math.py‟.
2.Create space where modules definition
& variable will be created,
3.then execute the statements in the
module.

Now the definitions of the module will become part of the code in which
the module was imported. To use/ access/invoke a function, you will
specify the module name and name of the function- separated by a dot
(.). This format is also known as dot notation.

value= math.sqrt (25) # dot notation

The example uses the sqrt() function of module math to calculate the
square root of the value provided in parenthesis and returns the result
which is inserted in the value. The expression (variable) written in
parenthesis is known as argument (actual argument). It is common to say
that the function takes arguments and returns the result.

Built in Functions
Built-in functions are the function(s) that are built into Python
and can be accessed by a programmer. These are always available
and for using them, we don‟t have to import any module (file). Python
has a small set of built-in functions as most of the functions have
been partitioned into modules. This was done to keep core language
precise.

ExampleDescriptionName
abs(-45)
>>45
abs(119)
>>119

It returns the distance between x and
zero, where x is a numeric expression.

abs(x)

max(80, 100, 1000)
>>1000
max(-80, -20, -10)
>>-10

It returns the largest of its arguments:
where x, y, and z are numeric
variables/expressions.

max(x, y, z,
....)

min(80, 100, 1000)
>>80
min(-80, -20, -10)
>>-80

It returns the smallest of its arguments;
where x, y, and z are numeric
variables/expressions.

min(x, y, z,
....)

cmp(80, 100)
>>-1
cmp(180, 100)
>>1

It returns the sign of the difference of
two numbers: -1 if x < y, 0 if x == y, or 1
if x > y, where x and y are numeric
variable/expression.

cmp(x, y)

round(80.23456, 2)
>>80.23
round(-100.000056, 3)
>>-100.0
round (80.23456)
>>80.0

It returns float x rounded to n digits
from the decimal point, where x and n
are numeric expressions. If n is not
provided then x is rounded to 0 decimal
digits.

round(x [, n]
)

Composition
Composition is the art of combining simple function(s) to
build more complicated ones, i.e., the result of one function
is used as the input to another.
Example
Suppose we have two functions fn1 & fn2, such that
a=fn2(x)
b= fn1 (a)
then call to the two functions can be combined as
b= fn1 (fn2 (x))

So far we have only seen the functions which come with Python
either in some file (module) or in the interpreter itself (built-in), but it
is also possible for a programmer to write their own function(s).
These functions can then be combined to form a module which can
then be used in other programs by importing them.

To define a function keyword def is used. After the keyword comes
an identifier i.e. name of the function, followed by a parenthesized
list of parameters and the colon which ends up the line. Next follows
the block of the statement(s) that are part of the function.

User Defined Functions

Block of statements
A block is one or more lines of code, grouped together
so that they are treated as one big sequence of
statements while executing.

In Python, statements in a block are written with indentation. Usually,
a block begins when a line is indented (by four spaces) and all the
statements of the block should be at the same indent level. A block
within block begins when its first statement is indented by four
spaces, i.e., eight spaces. To end a block, write the next statement with
the same indentation before the block started.

Syntax of function
def NAME ([PARAMETER1, PARAMETER2, …..]): #Square brackets

include
 statement(s) #optional part of statement
Let‟s write a function to greet the world:

def sayHello (): # Line No. 1
print “Hello World!” # Line No. 2

Parameters and Arguments

Parameters are the value(s) provided in the parenthesis when
we write the function header. These are the values required by
the function to work.

Let’s understand this with the help of a function written for
calculating the surface area of a cube. length is a parameter
to function area.

def surfaceAreaCube(length): #
Calculates the surface area of the
cube surfaceArea = 6*length*length
return surfaceArea

If there is more than one value required by the function to work
on, then, all of them will be listed in the parameter list separated
by a comma.

Arguments are the value(s) provided in function call/invoke
statement. A list of arguments should be supplied in the same way as
parameters are listed. Bounding of parameters to arguments is done
1:1, and so there should be the same number and type of arguments
as mentioned in the parameter list.

Lets code

sprite = Sprite('Tobi')

def surfaceAreaCube(length):
Calculates the surface area of the cube
surfaceArea = 6*length*length
return surfaceArea

def volumeCube(length):
Calculates the volume of the cube
volume = length*length*length
return volume

sprite.input("Enter the side length")
l = int(sprite.answer())

sprite.say("Surface Area is " + str(surfaceAreaCube(l)), 2)
sprite.say("Volume is " + str(volumeCube(l)), 2)

Simple Interest Formula
Simple interest is calculated with the following formula:
S.I. = P × R × T, where P = Principal, R = Rate of Interest in % per annum,
and T = Time, usually calculated as the number of years. The rate of
interest is in percentage r% and is to be written as r/100.

Code

sprite = Sprite('Tobi')

def interestCalculator(principal, rate, time):
amount = principal + principal*rate*time/100

return amount

sprite.input("Enter the principal amount")
principal = float(sprite.answer())
sprite.input("Enter interest rate")
rate = float(sprite.answer())
sprite.input("Enter the time")
time = float(sprite.answer())

sprite.say("Amount is: "+ str(interestCalculator(principal,rate,time)), 2)

